e

C— = =—y—r=—

D=AD47 936 OHIO STATE UNIV COLUMBUS ELECTROSCIENCE LAB F/G 9/5
SYNTHESIS AND OPTIMIZATION FOR ARRAYS OF NONPARALLEL WIRE ANTEN==ETC (U)
JUN 77 J SAHALOS NOOO14=76=C=-0573

UNCLASSIFIED ESL=-4372-3 NL




986270V ay e o NOETE SR

|







UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Enterad) lr
REPORT DOCUMENTATION PAGE BEF‘;%‘;:DC'(’::;E%‘TI‘:‘({“‘;?O“ ;
1 REPORT NUMBER ‘2 GOVY ACCESSION NO.| 3 RECIPIENT'S CATALOG NUMBER ]
1 :
& TITLE (and Subiitle) . .o = S 9 va've OF REPORY 8 PERIOD COVERED
SYNTHESIS AND, QPTIMIZATION FOR.ARRAYS OF Techn1ca],Ré§i¥t. 7
_,NONPARALLEL NIRE ANTENNAS BY, THE ORTHOGONAL :
METHOD = / RFORMING \/ REPORTYT NUMBER ‘i
7 AUTHOR(e) A e ____:--:———3::£L”UMB£a"’ 3
2 AR . : it
@A John Jsahalos | @ NpBP14-76-C-g573 / i
Petassaismat—— e -
9 PERFORMING ORGANIZATION NAMFE AND ADDRESS JL 10 '::gE%A;NOERLKE:E:JTT.“PJ:OBJEEgsT. TASK
The Ohio State University ElectroSciencev

Laboratory, Department of Electrical Engineering
Columbus, Ohio 43212 cAL

tt. CONTROLLING OFFICE NAME AND ADDRESS 12 REPORT D
Department of the Army // June B77 j

Off'ice Of NaVa] Resan‘Ch (et S M BT ROF P AGES
Arlington, Virginia 22217 33
14 MONITORING AGEN > E & ADDRESS(if different from Controlling Office) 15 SECURITY CL ASS. (of thie report)

e S S R T R O e
%2 DECLASSIFICATION DOWNGRADING

[ nclassified
@ EZf,_’, 3 u

SCHEDULE
‘r"l
16 DISTRIBUTION STATEMENT (of thie Report) s L .,
- i'; \ s ¥ A e AR T e
) a0\ [ DISTRIBOTTON STATEMENT A
~ S0 et v e prssanas ==
-7 A L
M O o IRR A Approved for pi > r=leqse; |
‘\"\9—‘ ‘-, \‘5“( XAX Disiutbution Unliwited t
L LY ‘. i(‘ .'"‘ ‘,;: \\ e —————— S o rmee e RPrS————_
) P en TS Lot (T S B
17 DISTRIBUTION STATEMENT (of the abatract e 101 B'ock 0. r. dmgqm&-frsm Report)
L \_’, N
A >
o=
18 SUPPLEMENTARY NOTES
19 KEY WORDS (Continue »n revarse side if necesaary and tdentify by block number) ;
Antennas Synthesis
Arrays
OUptimization
s...* S——— ksl s et I———
20 BSTRACT 7Continue on reverse <ide If ne-asaary and identify bv block number)

The orthogonal method is presented for synthesis and optimization problems >
of arrays of straight, nonparallel, thin-wire antennas. First by the moment
method the far zone field and the performance indices of the array are repre-
sented by expressions useful for applying the orthogonal method. By a proce-
dure similar to Gram-Schmidt method, the far zone field and the indices of
the array are modified. The new expressions by a suitable procedure give
helpful formulas for synthesis and optimization.

Several examples for possible uses are included.

DD tom:' 1473 EDITION OF | NOV 6515 08 )i j\
e B Gl LASSIFIED

4o A 52{51

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)




TABLE OF CONTENTS

Page ]
I, INTRODUCTION ]

II. MOMENT METHOD FORMULATION b ,

o III. ORTHOGONAL METHOD FORMULATION 4 j
i IV.  OPTIMIZATION PROBLEM _ 7

A. Gain-Directive Gain and Efficiency

Indices Maximization 9

B. Optimization Subject to Constraint on ;

Electric Field Nulls and Sidelobe Levels 11 i

V. EXAMPLES 12 3

A. Synthesis 12 E

B. Optimization 19 1

VI.  CONCLUSION 24 i

APPENDIX I 25 %

APPENDIX II - INTEGRATIONS INVOLVED ON SYNTHESIS 21 :

REFERENCES 30 ;

:

ft

e el ?

e Biff Section [3
e




I.  INTRODUCTION

Optimization and synthesis methods for antenna arrays have been
studied by many researchers; the existance alone of a long series of
papers on these subjects is enough to emphasize the importance of these
areas. Specifically Dolph [1] and Riblet [2] have published a series
of very interesting papers. These papers, by using Chebyshev polynomials,
give a synthesis for uniform linear arrays which offers the minimum beam-
width for a prescribed sidelobe level. Unz[3-6], Harrington[7], Kiny,
et al. [8], Jacabsen and Madsey [9] and many others gave answers to
very interesting problems. Un the array optimization Uzkov [10] first
found by using linear transformations, the maximum directivity of
linear arrays. Uzkov's theoretical work was extended by Bloch, et al.
[11], Uzsok and Solymar [12] and Stearns [13]. Tai [14] considered the
problem of achieving maximum directivity in uniform linear arrays of
short dipoles and gave many useful graphs on the subject. Cheng [15]
studied the determination of directivity in more complicated arrays.

Lo, et al. [16] obtained the optimum SNR with constraint on the Q-factor.
Sungiri and Butier [17] have used the eigenvalue method to find the
solution for the maximum directivity with constraints on the resulting
sidelobes. Matrix methods were applied by Strait and Kuo [18], Sarkar
and Strait [19] and Sahalos [20] for constrained optimization of various
performance indices of arrays with straight parallel or nonparallel

thin wire antennas.

The orthogonal method for arrays consisting of arbitrarily oriented
short dipoles was applied by Sahalos [21-22]. The orthogonal method
one decade ago was used first by Unz [23] and recently by Sahalos [24-26]
in many antenna array applications.

In the present work an effort is made to give some useful formulas
applicable to synthesis and optimization problems when the arrays con-
sist of nonparallel wire antennas.

II. MOMENT METHOD FORMULATION

Let a wire structure (Figure 1) be composed of a number of straight
segments. By defining a right handed orthogonal coordinate system (n,s,¢)
at each point of the wire's cylindrical surface, we can find [27] that:

L
. JO 1() (EM-ZgHM)do = V, . (1)

This expression expresses the reaction integral equation developed by
J. Richmond and is true for electrically thin wires.
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By expanding the current on the wire in a finite series of the
form

1(2) = § IF,(s) (2)
n

we can have from Equation (1) a system of simultaneous linear algebraic
equations

[z)(1) = (v) (3)

where the elements Z . of the matrix [Z] are:

= - | F (2)(EM-Z H™)ds . 4

T [nn()( ) (4)
The quantities in Equations (1) and (4) are given by:
me (3 - &7 - Hy - ) av (5) «
L] 2 m
6= o Jo - EM do (6)
2n

¢ wck - 50
B8 SINERRRT (7)

where (Ji,ﬁi)‘arg the impressed currents by which the wire structure is
excited and (E™,H™) is the field of an electric test source located in
the interior of the wire surface and radiating in free space.

By the help of Equation (3) we can find a relation between the
currents and the corresponding voltages of the form:

(1} = [YJ(v) (8)

where in the column (V) the elements are nonzero only at the feed points.

The far zone field transmitted by an antenna can be expressed as:

E(4,0) = EB(M) + E¢(¢.o) " (9)




If the wire structure is composed of N1 segments and N(N < N1) main
ports, the expression of Equation (9) will become:

; N N1 o ; '
E(e,0) = L Viq 1 Yai [EQ(.0) + Eb(o,0)] : (10)
]:

The vectors EY and Eﬁ are the electric field components of the nth
segment. If the center of the segment has coordinates (rn,¢n,9 ) and
direction angles (¢",0") then:

E2(5,8) = [coso sinei cos(¢-¢1) - sine cosel] exp[jqi]é ] )

E2(4,0) = sino® sin(s1-¢) exp[ja; o ‘[
where:

g~ %ﬂ-ri[sinﬁ sine; cos(¢-¢i) + cosé6 COSHi] g (12)

I11. ORTHOGONAL METHOD FORMULATION

Equation (10) shows that the e]ect(1c f1e1d is a vector of an N1-
dimensional vector space with a basj s {0 = {E§y + E9). As we can see
N vectors of this space define the ¢,e By a method analogous to
that of orthogonality we can express the f1e1d as a situation of N ortho-
gonal vectors of the same space. Let

. N1
d=al Voi(En + EB) (13)
and
N1
8 = mgl YoslB * ER) ; (14)

The inner product of these two vectors is:

A
v
—
B3
v
v
)

N1 NI nop2m
o3 YV f f [ESEX®+ ESEX?] sine dedof. (15)
n=1 m=1 0’0

We suppose that




T eem :
= J f [EgEa“ + E;£;®]sine dsde (16)

8
mn 00

and by Fquation (16)

e i §1 gl
7 P S T y (17)
S By ni'mj “mn ij

We now orthonormalize the vectors ;1’$2""'¥N with the aid of:

>

» D]
N = 17 (18)
L
> n:] > > >
‘ %n "Z] *¢n,¢j’¢j
b, = 1= (19)
. i'*An’An>l]/2

where A, is the numerator of Equation (19) and y is the corresponding
orthonormalized function [22] expressed by the equation:

» n (n) >
Wn i .y ci ¢] (20)
i=1
By Equations (19) and (20) we can find the coefficients an) which will
be
(n)_ 1
Cn o e .—7?- (2])
I(ll‘n’wn"
n_] 4 Q : o = b
) .y CiJ) [.l CEJ)“¢1:¢j>J
cﬁ" . i=1 (22)

- 1/2
[ <Vt

In view of Equation (17) the factors C take on the form




pr—

n-1 J
Y C(J) ( C(J) K )
c(n) E j=k k igl ! i
k Dn
c{m L > (23)
n
n-1 j : 2| 1/2
Dn = 9Knn - .z .% cgJ)Kni‘
3=1 - }i=t |

The expression of k_. can be found as a function of the array geometry
and is given in Appendix I. The electric field can now be expressed
with the help of $i as:

> N >
E(¢,0) = _Z] Ly v;(650) (24)
1=
where the L; are given by

Li = <E,¢i> (25)

and the corresponding voltages V; by the help of Equation (20) will be:
N :

v, = 7 Lcld) : (26)

As result from the above discussion the synthesis of an array will

follow these steps:

i) Definition of the five coordinates of each segment (three
positional and two directional);

ii) Calculation of the constants C;
iii) Evaluation of the field E(¢.0);
iv) Calculation of L;; and

v) Computation of the feed voltages Vi.
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IV. OPTIMIZATION PROBLEM

The optimization problem is a procedure of maximization of an
index of the array with or without constraints. Some of the usual
performance indices which are involved follow.

i. Power Gain

radiation intensity for specified direction | (27)
power input to the array

G = 4r

In relation to the feed voltages and the input admittances, Equation
(27) is expressed as

g o ){2
Vi ¢:0(8,,8,}]
JE It 020
6(¢ge05) = Tl il (28)
15 F 7 Waoue(vt. + vl
L TR ij

where ng is the admittance between the main ports i,j.

2. Directive Gain and Directivity

The directive gain is defined by

» radiation intensity for specified direction )
S radiation power (29)

It can be shown that the radiation power is an expression of the form:

N
= VST L S 5 B S N 30
AR = 321 i J( i 1 W \J) N

o
i
ez

where complete details for the Vij are available in Reference [28].

The expression of directive gain becomes

N 5 ‘2
.z Vi ¢i(¢0’”o)
D(i‘oa(-‘o) = 1=} Pr _L (3])

and the maximum value of D(tono) is the directivity.




3. Efficiency Indices

The efficiency indices are very important parameters describing
the performance of an array. Many indices can be defined by several
ways. Two of these are

_ radiation intensity in the direction of max. radiation (32)
sum of the excitation voltages magnitudes squared

_ radiation intensity in the direction of max. radiation (33)
1 = sum of the feed port current magnitudes squared :

Equations (32) and (33) can be written

wm
"
—
n-——1=
—
<<
—
<4
-
no

34
N g (34)
121 i
N 2
.Z] Vi ?5
Sy 2 AT (35)
N | N 2
|
Iy Mave,
i=1]3=1 vl

Some other factors as sensitivity and Q-factors can be defined. These
are related to the above indices and given by

-

and Ky = (sensitivity factors) (36)

=
]
u|
I
wn
=

mlm

(Q-factors). (37)

e 8
S and Q]
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A. Gain-Directive Gain and Efficiency
Indices Maximization

Until now we have seen that all the above indices can be written
in the following formula

|} :
I Vi #i(4gs0,)
S , 38
In(tg.04) = N (38)
\ *
];] J“ V1VJS1J

where Si; is expressed correspondingly in Equations (28), (31), (34)
and (35}

By the orthogonal method in the denominator of Equation (38) we
can find an expression

L3 v -
boOVLVAS. . = L.L* A (39)

= gt Ao

The,L; are related with V; by Equation (26). The necessary factors

C J)are g1ven from Equat1on (23) by substituting the K1J by S1J Using
the expression

HORREIC LA CNN (40)
i=

Equation (38) yields

—_—
—
i
S 2
-
—
-
o
b
D
o
—~—

(41)

»,ﬂ

—
>
—
V=S
o
o
~
1
—
—
. 3

-
noS—Z N2

-
a—]
-

we have




N 2 | N 2
LI R U R B
L o
In(¢0’00) i N *
4y HH

(42)

where w? = &i - ¢ and ¢$ = $. « . By the Schwartz inequality we can

A\ 6.2 h i 0*92

TR (Z LL¥ (-z “‘1‘“’1‘) :
Gl L el i
L0 S R | s N L

L .2] L.ix i

i=1 i=

and

N 2 N N 2

Lo (el )
¢ i=1 SNl i=1 = 3
In(6g:8g) =~ ? - N i1

[ LYr
geq ot iZ] Ly

From Equations (43) and (44) we can see that
ImaX =~ ? ( 6 *6 + “¢ *¢)
n "L Pibs gy

By the same procedure as in Reference [22] we can show that

" *9 *
Li = koui® + nug?

where the parameters k and A are related by

10

5]
o ye®
79

(43)

(44)

(45)

(46)




i ¢ *b
_55_= - (47)
s v .0 %0
=Ry

-
-—

Equation (47) gives at the same time through K and A the polarization
sought.

B. Optimization Subject to Constraint
on Electric Field Nulls and
Sidelobe Levels

Suppose that we want to determine the feed voltages that will pro-
vide electric field nulls and sidelobe levels in K directions for the
E® component and in A directions for the E® component. The above con-
straint give K+: relations between the feed voltages. If the field in
the K direction is related with the Eg in the direction of maximum by
the form:

6 =
Eﬂ K
(5]
E> Ko
= |- Eg = [KIE] (48)
6
el 1%

and correspondingly for the E$ field:

3 /\1‘]
e A2
e
| i Eg = [AJES (49)
¢
| & X

n




then by the help of the Equation 10) we can find a relation between the

K+\ feed voltages and the rest N-K-A. More details for this relation

can be found in Reference [20]. Finally we will have a modified expression
of In(9gs0g) which will be of the form

Rl 2
L Vi Z;(85,6,)
In(9929) = o weres ' ; (50)

VioV%g. .
jZ] : Jg‘J

" e~ R

-l
"o~
—

Equation (50) is similar to Equation (38) and the maximization of the
index I, will be done by the same method as before.

The g, are the matrix elements [Q] of Equation (58) and the Ei
are the ele&ents of the vector

[Z] = [z926 + [5,0%
of Equation (56) in Reference [20].

The above procedure gives the maximum index I,, when K+x values of
the electric field are known.

If we want some of these to be the sidelobe levels then we can
use an iterative procedure. Thus we find first the feed voltages by
the above procedure and the level of the electric field sidelobes.
These are compared with the desired levels. The new directions of
sidelobes are used to find new feed voltage, etc. The procedure is
continued until all the sidelobes take on the desired values.

V.  EXAMPLES

A. Synthesis

In all examples we assume that the wires have radius 0.005), are
centerfed and their length is A/2. For the case of synthesis a double
integration is applied. In Appendix II we show a method of numerical
integration with good accuracy. This method is extended in Reference
[30] and uses the Chebyshev polynomials.

1. Let us suppose at first that we have two dipoles normal to
each other with their centers a distance about equal to the diameter
of the wire. We wish to have an electric field of the form

E(¢.9) o ej¢ $

12




By the orthogonal method we found the feed voltages
Vi=1. and V, = -j

The above values give the well known omnidirectional dipole.
2. Suppose a directive field of the form:

E(¢,6) = exp(-alsinze cos2¢) cos(2bysine cosw)é +

2

+ exp(-azsin 6 cos2¢) cos(2b251ne cos¢)$

has the following properties:

The E® is max. when sinecos¢=0, zer01ng of the E® mainlobe is whe
sinocos¢=n/4b, and the beamwidth of EY is 251n6]cos¢] when v2/2=exp(-a
s1n20]cos¢ )cos(2bysinejcosey ). In the same way we can find the E®.

An arra¥ with N=7 d1p01es in equa] distance A/2 and with directions
¢°=0, o'=n/4 as shown in Figure 2, for aj=ap=2.683 and by=b,=1.428 g1ves

'the following feed voltages V1=4.237/0°, Vp=V3=3.735/5°, V4=V5=1.76/8°.3

and Vg=V7=.27/8°.1.

If Figures 3a,b we can see the normalized E® and E?® field as a
function of p=sine for ¢=0°.

4LY

N
H
(-]

Figure 2. Seven dipole linear array of equal A/2 spacing
having orientation ¢'=0,0"=n/4.
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Figure 3b. Normalized E® field as a function of p=sin.

0.9

THEORETICAL.

15




3. If we wish to obtain an electric field with a Chebyshev
expression as
E(4,0) = (cosocos¢-sin0)T7[cos(1.2ncos¢sino)]6 +
- sing T7[cos(1.15ncos¢sing)]s
where T7 is the Chebyshev polynomial of seventh degree by using an array

with N=8 dipoles in 1/2 equal distance and direction as are shown in
Figure 4, we found

Vy = 30.6/0°, V, = 4.645/10°, V3 = 1.843/5" and V4 = 1.0/0°.
ﬁz

ft}'/P'/Fl; . n/{o e

4 3 2 | | 2 3 4

Figure 4. Linear array with 8 non-parallel wire antennas.

In Figures 5a,b we can see the normalized E%(¢,n/2) and E®(4,n/2)
fields.

16
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Figure 5a. Normalized E¥($,7/2) field of the linear
array in Figure 4,
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B. Optimization

In Figure 6 we can see the maximum gain _of a linear uniform array
of nonparallel wire antennas with #1=0 and 91=2:(i-1)/N for N=4 to 10
versus the interelement distance in the broadside direction. It is
interesting to say that in this case there are critical equaldistances
in which we have maxima. So in .7x equal distance we have the maximum
gain for all arrays.

In Figure 7 is plotted the maximum directive gain of a circular
array with tangential wire antennas in the directions 4'=n/4, t'=2~
(i-1)/N + n/2 for N=4 to 10 versus the diameter of the array. In this
case the directive gain increases as the diameter decreases.

Another one example is the design of a 6-element linear array in
equal distance .5» and directions 5'=0, al=r(i-1)/1C to provide maximum
gain in the broadside direction subject to the contraint that for both
E’ and E? are required nulls in the direction (+=50°,6=90°). We found
maximum gain G=11.559 and the feed voltages

Vi = .088/-124°.6, V, = .246/-175°.5, V3 = .6576/-250°
Vg = 107, Vg = .285/40°, Vg = .4259/-34°.6

In Figure 8 we can see the normalized E”(#,7/2) and E®(¢,/2)
fields.

As a last example the same 6-element array has maximum gain G=6.767
subject to the constraints that (i) nulls are required to direction
($=60°,¢=90°) and (¢=50°,6=90°) for the E® and E! fields correspondingly
and (ii) EY(40°,90°)=1/5 EY(90°,90°). In Figure 9 we can see the normal-
ized EC(4,n/2) and E¢(¢,n/2) fields. The corresponding feed voltages
in this case in absolute values as they were taken from th~ computer
output are:

]
"

Vi = 57.578 + j38.129, V, = 81.02 + j29.205, V3 = 91.412 + j52.613

100.834 + j30.476, Vg = 61.564 + j6.619, Vg

"

Vg 44.851 + j6.3057 .

19
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MAX. DIRECTIVE GAIN

| |

Fiqure 7.

2 3

o x

Maximum directive gain of a circular array with tangential
wire antennas in the direction 0V=1/4,¢1=:/2+42(i-1)/N for
W=4 to 10 elements versus the diameter of the array.
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VI. CONCLUSION

As a result of the foregoing discussion, we have seen that the
orthogonal method can be applied to an arbitrary array of wire antennas,
and that it can solve synthesis and optimization problems with good
accuracy, apart from rendering it easily solvable with the aid of a
computer. The method can be applied for any case of parallel or non-
parallel wire antennas, while the parallel wire array is a special
case of an arbitrary array.

For optimization problems the orthogonal method has the advantage
of using easily applied formulas without the necessity of inverting
matrices. But in the case of optimization under the constraint that
one index has a given value, the matrix method must be used. That is
because in nonlinear constraints the formulas given by the orthogonal
method will be more complex. At least this problem needs to be studied
further. In the other cases (linear constraints) a comparison between
the Matrix and the Orthogonal method reveals that the second one is

faster and needs less computer time than the first one. So, both methods

have advantages and disadvantages which a designer must keep in mind.

24
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From Equation (17) we have found that

2 l APPENDIX I

e (11
Kis = Yo aYE e I-1
iJ Wiy msy  Mimg o
‘ I From the expression (16) we can find that S, as a function of the
array geometry, so
m [21'.
‘ * =7
S Jo i [E oEh + Ep Ex Isino dode . (1-2)

By using Equations (11) and (12) and integrating we take

Spm = sinoMsina"(A, +Bp,) + sinoMcoso” CT o+
+ singcoso™ CP + cose™cose" Gpq (1-3)
where
m, . n @ 2 JS(Z(Krmn)
Apn = 2ncos[2(op-0,) + ¢ +o"] J;; (KRpn) 5/2 (1-4)
(Krmn)
= o = J-l Z(Kr‘mn) J3/2 Krmn
Ban = 2ncos(o-¢"') 2 §'“"1““‘17§E
(Krmn) (K"'mn)
(Krpn)
m 2 5/2 mn
+ 5 (KRpy) '—aaj-3§7§ (1-5)
Je o Krmn)
572 Krmn -+
Crn = 4708 (¢yy=0p=¢") Jgj(Kszann).7;T—;§7E“ L
mn
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| Gy = 4 T J, J3(2(Krmn) 3 (KRm )2 J5/2(Krmn) (1-7)
-g : : (K"'mn)sl/2 : (K mn)5 :
when m=n
_ 8
Smn = 31

By knowing the S, the Kjj is known from Equation (I-1).

In Equations (4) - (7) the involving parameters are:

=
"
>N
=

- 2 2 2
"mn = J(xm'xn) Y=Yy ) H(Zp-Z,) ,

k)2 (Ve ;

:_'P
>
1]

(Zy-Zy)
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APPENDTX 11
INTEGRATIONS INVOLVED ON SYNTHESIS

For the case of the synthesis as we can see from Equation (25) one
double integration is applied. The electric field which is desired may
or may not be one function with a closed form mathematical expression.

In all cases the description of the electric field may be done by
sample points which we will show as follows.

The inner product of Equation (25) is an expression of the form
e [, e Genn) + E¥o0det 0)Isine dedn (111
i 0 jo (w’g)ii $59 Oy wi Vs siné d¢ - )

A suitable formula for this double integration, as well as for a single
one, was found by Sahalos [29-30] by the help of Chebyshev polynomials.

If we have the integration
b (d
J= f | F(or0)dods (11-2)
alic

vwe can modify the Timits of integration as

§ = ‘f [(a+b) + (b-a)q]
(11-3)
o = 3 [(d+c) + (d-c)p]
and have
1 1
o - bma)ld=e) [ [ p,q)-dp-da (11-4)
VY L

With n2 sample points the Chebyshev polynomials[30] gives an approxima-
tion to Equation (II-4) of the form
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SZan

2kns
g = (b-a)(d-c) 16 nfg g ngg gu i R T

4 n K20 $=0 250 m=0  (4k%-1)(422-1)

'feoﬂimoﬁi) . (11-5)
n n
(2" means that the first and last coefficients of the sum are multiplied

by 1/2).

Expression (II-5) is written as

n n
(b-a)(b-c) " )" A(s,m)-f(cos"S cos%i) (1I-6)

\J’_}i =y
s=0 2=0 3

=N| »

the A(s,%) is the weight of the point with q = cos(ns/n) and p = cos(n&/n).
By using g2 points for example we can make a table with A(s,%)

which by putting to the memory of the computer can have more faster
the integration. In the following table we can see the A(s,2) for N=8.

Some examples to show the accuracy of the method follow.
1. The integral

P js.z J3.2 ik
g i Xy

has an accurate value equal to 0.123312. Application of the formula
(55) gave the following table:

n J

6 0.123 312 156 4

8 0.123 312 156 484
10 0.123 312 156 484 11

as we can see for n=8 we have an approximation with 12 significant
figures.
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2. The intearal
n r2’| 1

J = { J exp j2n(= sinucos¢ + 1 sinosing + X cosu  sin% dadé
010 3 2 6

has an accurate value of -2.247888336+j0. Application of the formula
(I11-5) gives

n Gk ‘~J —_;
6 -2.247g-+j 0. g
8 -2.247 888 +; 0.

10 -2.247 388 336 1 +j0.

3. By using Simpson's rule the integral

1
¥

y dxdy

3ie=3
= J J sinzx sin2
s

] gives seven significant figures for n=32. The exact value of the
integral is 1.68267136378. OQur formula gives:
n J
6 1.682 681
8 1.682 671 36
_»10 1.682 671 363 781

Thus convinced that the approximate integration of the function f(¢,)
presents a high degree of accuracy, we went on to the synthesis of the
antenna.
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